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A method for process fault detection is presented, based on the integration of multiscale
signal representation and scale-specific clustering-based diagnosis. Previous work has dem-
onstrated the utility of our multiscale detection scheme applied to linear projection-based
methods, such as PCA and Dynamic PCA. This work further demonstrates the use and method
independence of the multiscale scheme by applying it to a nonlinear modeling method, namely
Adaptive Resonance Theory-2. The multiscale ART-2 (MSART-2) algorithm detects a process
change when one or more wavelet coefficients violate the similarity thresholds with respect to
clusters of wavelet coefficients under normal process operation at that scale. In contrast to
most other multiresolution schemes, this framework exploits clustering behavior of wavelet
coefficients of multiple variables for the purpose of scale selection and feature extraction. By
reconstructing the signal with only the relevant scales, MSART-2 can automatically extract the
signal feature representing the abnormal operation under consideration. Illustrative examples
as well as Monte Carlo bases for these claims via a comparative performance analysis over
several case studies are provided. Comparison of average detection delays or run-lengths of
MSART-2 with those of ART-2 for a variety of processes with different statistical character-
istics is provided. Comparative results on real industrial case studies from a petrochemical
process plant are also presented. Results indicate that MSART-2, as compared to ART-2, is a
general approach that may be preferable for problems where it is necessary to detect all
changes drawn from processes of various statistical characteristics. © 2004 American Institute
of Chemical Engineers AIChE J, 50: 2455–2466, 2004
Keywords: statistical process control; process monitoring; adaptive resonance theory;
fault detection; wavelets; average run-length

Introduction

In an environment where most process maneuvers are auto-
mated, algorithms to detect and classify abnormal trends in
process measurements are of critical importance from the point

of view of safe and economical plant operation. These algo-
rithms use information extracted from previously annotated
process data for predicting, preferably in real-time, the state of
the process when only unannotated measurements are avail-
able. This task is referred to as fault diagnosis or anomaly
detection and isolation. Clearly, one can draw close parallels to
the above objective from fields as diverse as e-commerce
(fraud detection), network security (intrusion detection), and
wireless communication (signal detection). It is not surprising,

Correspondence concerning this article should be addressed to B. R. Bakshi at
bakshi2@osu.edu.

© 2004 American Institute of Chemical Engineers

PROCESS SYSTEMS ENGINEERING

AIChE Journal 2455October 2004 Vol. 50, No. 10



then, that algorithms designed for each of these varied appli-
cations often rely on the same repository of pattern recognition/
statistical modeling methods, such as neural networks and
PCA, for learning the characteristics of the data. This work
focuses on one such method, namely adaptive resonance theory
(ART), and investigates its performance within the proposed
multiscale framework. The current work, however, is not spe-
cific to ART and has the potential to benefit other parallel
applications across different domains and modeling methods
listed above. Our results compare the performance of ART-2
diagnostic models with and without the proposed multiscale
framework to emphasize the utility and versatility of the hier-
archy. However, comparison of the diagnostic ability ART-2
with other modeling/machine learning techniques is beyond the
scope of this article. The reader is referred to the article by
Carpenter et al. (Carpenter and Grossberg, 1987; Carpenter et
al., 1991a, b, c, 1992) for a comparative analysis of ART-based
methods applied to various problems of theoretical and/or
practical interest.

Most real-world large-scale industrial processes, by their
inherent nature, are not precisely defined in the space of sensor
measurements. Clustering-based models approximate complex,
multivariate modes of operation as regions in sensor space as
opposed to deriving a precise functional relationship; and are,
thus, well suited for diagnosis of industrial processes (Whiteley
et al., 1996; Kavuri and Venkatasubramanian, 1993). Specifi-
cally, the ART family of networks (Carpenter and Grossberg,
1987; Carpenter et al., 1991a, b, c, 1992) includes some of the
few clustering algorithms that explicitly address the issue of
stable adaptation and incremental learning with changing pro-
cess behavior. ART and ARTMAP-based networks have been
investigated for process modeling and diagnosis of multivariate
chemical data by several researchers, such as Wienke and
co-workers (Wienke and Buydens, 1995, 1996; Wienke et al.,
1996), Hopke and coworkers (Song et al., 1998), as well as
Wang and coworkers (Wang et al., 1999), in addition to the
previous work by the authors (Whiteley and Davis, 1992).
However, ART-based clustering algorithms are especially sen-
sitive to noise because of the inherent feature enhancement
ability of ART coupled with the ability to remember rare
events. The work by Frank et al. (Frank et al., 1998) studied the
clustering performance of fuzzy ART and ART-2 in the pres-
ence of noise, and concluded that responsiveness to novel
behavior can lead to nonoptimal mapping, because of the
uncertain distinction between “novelty” and “noise.” Thus, the
properties of adaptive resonance theory that led to advantages
in a noise-free environment do not necessarily offer similar
benefits for noisy mappings (Marriott and Harrison, 1995).
Several ART and ARTMAP variants have been proposed in the
past to tackle this issue (Marriott and Harrison, 1995; Lim and
Harrison, 1997; Srinivasa, 1997; Williamson, 1996; Wang et
al., 1999).

This work approaches the problem of noise in ART map-
pings of digital signals in a manner fundamentally different
than the research efforts discussed earlier. The proposed mul-
tiscale hierarchy of ART networks does not modify the inter-
nals of ART-2 in any way. As a result, the benefits of our
mechanism are likely to be applicable even if any of the earlier
ART variants were used as the basic unit of the hierarchy.
Indeed, previous applications of our multiscale hierarchy have
illustrated significant improvement in the performance of linear

diagnosis methods, based on PCA, Dynamic PCA, and a uni-
variate Neyman-Pearson (NP) classifier (Bakshi, 1998; Bakshi
et al., 1999; Aradhye et al., 2003). For an ideal case of a
univariate Gaussian IID signal, the NP classifier can be theo-
retically proven to yield higher detection accuracy over a broad
range of mean shifts if used with the proposed hierarchy
(Aradhye et al., 2003). This work combines the advantages of
ART networks, such as the ability to model nonlinear, disjoint
process mappings, and the incremental training ability—with
the benefits offered by multiresolution processing, such as
noise tolerance and quicker as well as more robust detection of
events.

Wavelets and multiresolution signal analysis (Mallat, 1989;
Strang, 1989) have triggered developments in a range of pro-
cess systems engineering related domains, such as trend ex-
traction (Bakshi and Stephanopoulos, 1994), process modeling
(Nounou and Bakshi, 1999), sensor validation (Luo et al.,
1998), noise reduction (Palavajjhala et al., 1996), and so on.
Advantages of these applications arise from the fact that most
naturally occurring process signals are, in effect, a combination
of various signal components corresponding to different events
occurring at different localizations in time and frequency. Un-
like previous developments, however, the proposed multiscale
hierarchy exploits clusters of wavelet coefficients of multiple
process variables to provide a systematic way of selecting the
most relevant scales. Because of fundamental functional rela-
tionships, such as process chemistry, energy and mass bal-
ances, measurements in multivariate processes are correlated.
If these intervariable correlations are linear, the resulting wave-
let coefficients will be linearly correlated as well (Bakshi,
1998). Similarly, if the process variables are nonlinearly cor-
related, the wavelet coefficients will be nonlinearly correlated.
This work proposes to take advantage of these correlations and
clustering behavior in the wavelet space for higher detection
accuracy coupled with noise reduction. Our earlier work
(Aradhye et al., 2003) has shown that wavelet decomposition
with downsampling is more useful for monitoring of highly
autocorrelated or nonstationary measurements, whereas de-
composition without downsampling is useful for diagnosis of
uncorrelated or mildly autocorrelated measurements. In this
work, we focus exclusively on transformations without down-
sampling as the emphasis here is on quick, online detection of
faults in a nonlinear system.

Description of the Proposed MSART-2 Algorithm

Figure 1 shows the MSART-2 approach for online anomaly
detection. Given the vigilance parameter �, and the number of
scales L, the following approach allows us to construct the
ART-2 feature maps that constitute the MSART-2 architecture.
Let P be the number of process variables in a multivariate
process. All the constituent networks of the MSART-2 scheme
cluster the data over a P-dimensional space of either the
wavelet coefficients of these P variables on different scales, or
the signals reconstructed by various combinations of wavelet
coefficients.

Training

Consider an N � P matrix Ytrain of normal training data,
where N is the number of training samples. During the training
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phase, the following steps synthesize normal clusters and, thus,
capture the normal behavior of the process. We first apply the
1-D wavelet transform to each of the P variables to obtain
detailed signal coefficients dm,t,p

train , and the scaled signal coeffi-
cients aL,t,p

train, where m � 1, . . . , L, t � 2L, . . . , N, and p �
1, . . . , P. The illustration in Figure 1 used a wavelet decom-
position with L � 4. We then construct L � 1 training
matrices Dm

train, m � 1, . . . , L, and AL
train, each of size N �

2L � 1 � P, that contain the corresponding detailed and
scaled signal coefficients. ART-2 clustering is independently
applied to each of these training matrices. Let the resulting
cluster prototypes in the wavelet domain be represented as
ARTDm, m � 1, . . . , L, and ARTAL, respectively. We, thus,
have L � 1 ART-2 networks that constitute the scale selection
layer of wavelet-domain detectors. For example, Figure 1
shows a scale selection layer composed of ARTD1, ARTD2,
ARTD3, ARTD4, and ARTA4, which represent clusters of
wavelet coefficients of normal data at the respective scales.

A crucial feature of the MSART-2 architecture is the recon-
struction of the signal based on only the relevant scales. By
replacing all except the relevant scales by zeros before apply-
ing the inverse wavelet transform, the reconstructed signal is
made to conform to the nature of the change under consider-
ation in terms of its magnitude and rate of change. We, thus,
filter out the unnecessary details of the process from the point
of view of the change under consideration. At any time t � 2L,
the signal can be reconstructed in 2L�1 ways, depending on
which of the L � 1 scales were selected for reconstruction. For
each of the 2L�1 combinations, the coefficients corresponding
to selected scales are retained for reconstruction. The remain-
ing coefficients are reduced to zeros. Inverse wavelet transform
is then applied. In this fashion, we generate training data
matrices of reconstructed signals for each of the 2L�1 combi-
nations. Let these matrices be Ŷ1

train, Ŷ2
train, . . . , Ŷ2L�1

train, each
of which is of size (N � 2L � 1) � P. The data points for t �
2L are not reconstructed since all the wavelet coefficients are
available only for t � 2L, . . . , N.

Finally, we apply ART-2 clustering independently to each of
these reconstructed training matrices to obtain cluster proto-

types and associated weights in signal space filtered to retain
the selected combination of scales. These 2L�1 ART-2 net-
works, ARTŶi, i � 1, . . . , 2L�1, constitute the diagnosis
layer of detectors. In Figure 1, diagnoses of the 5 scale selec-
tion networks lead to 25 � 32 possible ways in which the signal
could be reconstructed. Correspondingly, the diagnosis layer in
Figure 1, is composed of 32 ART-2 networks, each of which
represents clusters of normal data reconstructed in one of the
32 possible ways.

When all scales are selected for reconstruction, the original
signal matrix Ytrain is exactly reproduced for rows correspond-
ing to t � 2L. The corresponding diagnosis layer network is the
same as the network used by Whiteley and Davis. Hence, the
time-domain ART-based detector is a special case of the mul-
tiscale hierarchy presented in this work.

Online Testing

Having trained the scale selection layer and diagnosis layer
ART networks, we are now in a position to carry out online
detection. At each time t, the following steps allow us to detect
abnormalities using the proposed MSART-2 approach:

(1) Apply wavelet transform to decompose the P-dimen-
sional signal vector yt

test into wavelet coefficients dm,t,p
test and

aL,t,p
test . Figure 1 shows a decomposition of a dyadic window of

the test signal yt
test into coefficients d1,t

test, . . . , d4,t
test and a4,t

test.
For each scale m, construct a P-dimensional vector dm,t

test,
comprising of coefficients dm,t,p

test with p � 1, . . . , P. This
vector is presented as input to detector ARTDm of the Scale
Selection Layer. Similarly, construct the vector aL,t

test to be
presented to the detector ARTAL.

(2) Each of these networks provides a diagnosis at the
corresponding scale, based on whether the similarity between
the input vector and the stored normal cluster prototypes is
above the vigilance threshold. Only if the network ARTDm

provides an “abnormal” diagnosis, the coefficients dm,t,p
test , p �

1, . . . , P, are retained for reconstruction. Similarly, only if the
network ARTAL provides an “abnormal” diagnosis, the coef-
ficients aL,t,p

test are retained for reconstruction. For example, in
Figure 1, the d2 coefficient vector was deemed “normal” by
ARTD2. Hence, prior to the application of the inverse wavelet
transform, the d2 coefficients of all variables were reduced to
zeros.

(3) Apply inverse wavelet transform to the wavelet coeffi-
cients selected for reconstruction. The vector ŷt

test, comprised
of the reconstructed values for the P process variables, is
presented as input to one of the 2L�1 ARTŶ diagnosis layer
detectors corresponding to the combination of scales selected
for reconstruction. For instance, the chosen diagnosis layer
network in Figure 1 was trained on normal data that was
wavelet-decomposed and reconstructed without the d2 coeffi-
cients. Thus, the selected diagnosis layer network compares the
reconstructed test signal at time t with prototypes of normal
signals decomposed and reconstructed in exactly the same way.
The resulting “normal” or “abnormal” diagnosis is provided to
the user.

The added benefits of our method come at a cost of increased
computation and storage requirements. For a wavelet decom-
position involving L scales, the worst-case computational re-
quirement for MSART-2 is approximately L � 2 times the
computation for the ART-2 detector. The worst-case storage

Figure 1. MSART-2 architecture for robust fault diagno-
sis.
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requirement for MSART-2 is in fact approximately L � 1 �
2L�1 times the storage requirement for ART-2.

Illustration of the MSART-2 Algorithm

In this section, we present three case studies that illustrate
the advantages of our approach in more detail. To facilitate a
visual representation, let us limit ourselves to two variables,
although the method is general, and can be applied to data with
any number of variables. The three cases differ in terms of
noise and the extent of separation between normal and abnor-
mal operation.

The experiments discussed in this article use the same set of
parameters for all the scale selection layer, as well as diagnosis
layer networks. All scales, thus, provide equally important
information about detection of an event. As a result, the algo-
rithm performs well as a general detection algorithm that can
detect a broad range of events. With more specific information
about the faults at hand, one may want to tailor the MSART
detection system to specific types of events by adjusting the
ART parameters at the relevant scales.

Figure 2a shows the normal behavior of the process consid-
ered in this illustration. The input vector x(t) consisted of
measurements of two nonlinearly correlated process variables
x1(t) and x2(t). A bivariate problem was chosen for visual
simplicity, although the algorithms considered are multivariate.
Gaussian noise was superimposed on the data to simulate noisy
conditions. Figure 2b illustrates the nonlinear correlation be-
tween these two process variables when plotted against each
other. Simulated faults included shifts of differing magnitudes
among differing levels of noise, followed by resumption of
normal behavior. The test signals were subjected to online
diagnoses by applying (1) an ART-2 detector, (2) a moving
average (MA) filter, followed by an ART-2 detector (referred
to as ART-2�MA), and (3) an MSART-2 detector. Compara-
tive analyses brought out the strengths and weaknesses of the
current approach with respect to the basic ART-2 based detec-
tion/diagnosis.

Please note that the noisy mapping in this case is random,

and the exact diagnoses may differ for different instantiations
of the random process. We go on to establish the utility of the
current approach in a Monte Carlo fashion in the next section.

Case One: A low-noise process with a clearly
separable shift

Figure 3a shows the test data used for diagnosis in this
section. As can be seen as the left side of the outermost arm of
the spiral, a shift was introduced to simulate abnormal behavior
from time-step 501 to time-step 550. The number of scales, L,
was chosen to be 4.

Scale Selection. The detection flags of the decomposed
signals provide an insight into the mechanism of scale selection
in the MSART-2 architecture. Figure 3b shows the diagnoses
by the resulting 5 Scale selection layer networks for a part of
the test signal. As explained earlier, the scale selection layer
subjects each wavelet coefficient of the test data (d1, . . . , d4,
and a4 in this case) independently to an ART-2 network trained
exclusively on the corresponding coefficients of training nor-
mal data. In Figure 3b, a detection flag of 0 indicates a
“normal” diagnosis, whereas a detection flag of 1 implies an
“abnormal” diagnosis. The overall diagnosis, that is, the diag-
nosis on the reconstructed signal (Figure 3b: bottom-most
graph), illustrates the effect of simultaneous selection of mul-
tiple scales. Figure 3b shows that when the abnormal region
started at time-step 501, the mean shift was detected immedi-
ately by ARTD1, the network trained with the finest detailed
component of normal data. Scale selection networks at the
subsequent (coarser) detailed scales, ARTD2, . . . , ARTD4,
detected the shift at subsequent points in time. Since the level
of detail became coarser at lower frequencies, the duration for
which the shift was detected increases from 1 time-step to 16
time-steps as we go from d1 to d4.

Similarly, when the normal operation resumed at time-step
550, the transition was detected in the order of the finest to the
coarsest scale. Except for the transitional region, the fault was
reflected only in the residual signal (a4) for most parts. The
residual signal is equivalent to that generated after applying 16

Figure 2. A bi-variate process for illustration of the MSART-2 approach.
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tap moving average filter, and, hence, it is less sensitive to
noise than the original time-domain signal. However, it con-
tinued to report the fault for roughly up to 16 time-steps after
the fault was over (Figure 3b: fifth plot from the top).

Reconstruction and Overall Diagnosis. Based on the out-
comes of the Scale Selection Layer networks, a reconstructed
signal was appropriately generated. For example, at time-step
551 in Figure 3b, only the networks ARTD1 and ARTA4

reported a non-normal operation. Hence, the reconstructed
signal at time-step 551 was generated by applying the inverse
wavelet transform with all other coefficients, except d1 and a4,
replaced by zeros. Similarly, at time-step 556, the recon-
structed signal was generated by applying the inverse wavelet
transform after retaining only the coefficients d3, d4, and a4,
and replacing all other coefficients by zeros. This reconstructed
signal was then subjected to an ART-2 network from the
diagnosis layer. At each time-step, of the 32 diagnosis layer
networks, the network trained on data generated by carrying
the same reconstruction on normal data was chosen. The de-
tection flag of the diagnosis layer network chosen at each
time-step are plotted against time in the bottom-most graph.

The last scaled signal (a4) was the only coefficient selected
to reconstruct the signal for time-steps 509 through 550 (Figure
3b), because only ARTA4 detected the fault in this time inter-
val. The reconstructed signal was thus a scalar multiple of a4,
implying a consistent detection of sustained faults and less
false alarms. Beyond time-step 550, however, multiple scales
were selected for reconstruction. Since the transition at time-
step 550 was negative, that is, from a positive shift to no shift,
the scales d1 through d4 tend to neutralize the continuing
positive deviation of the residual a4 due to filter lag. As a
result, the diagnosis based on the reconstructed signal (bottom-
most graph) did not lead to as many false alarms following the
resumption of a normal state as the diagnosis based solely on
a4 (4th graph from the top). The reconstruction operation is,
thus, crucial for avoiding false flags at the end of the abnormal
operation, and at the same time maintain consistent detection of
sustained shifts.

Analysis. The utility of the MSART-2 approach over
ART-2 with or without moving average filtering is seen from
Figures 3c and 3d. Figure 3c shows the similarity measures,
and the associated vigilance parameters, for the current test

Figure 3. Comparative performance for test case one.
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data using ART-2 and MSART-2. A similarity measure below
the vigilance parameter (solid horizontal line) indicates an
“abnormal” diagnosis. While both ART-2 and MSART-2 de-
tected the fault for its entire duration, the multiscale approach
managed to achieve a larger separation between the normal and
faulty behavior without as many false alarms (Figure 3c).

Figure 3d shows the detection flags of three-fault detectors:
an ART-2 detector, an MSART-2 detector with a 16 tap wave-
let filter, and an ART-2 detector that uses a 16 tap moving
average filter for noise removal. The ART-2 detection perfor-
mance (top-most graph) reiterates the fact that ART-2 based
diagnosis without any preprocessing is prone to noise and,
hence, false alarms. MA smoothening filter achieves reduction
in noise, and, hence, reduction in false alarms, during contin-
ued normal operation (bottom-most graph). However, it did not
detect the fault immediately (time-step 501), and it lead to a set
of false alarms immediately following the malfunction (time-
step 550). The MSART-2 approach (middle graph) was suc-
cessful in reducing both of these disadvantages by focusing on
only the smoothened (a4) component of the signal during
sustained shift, and a combination of relevant scales during the
transitional phases.

Case Two: A low-noise process with a narrowly
separable shift

We now present a case where the faulty data were narrowly
separated from the normal data by changing the magnitude of
the shift (Figure 4a). The shift lasted for time-steps 501 through
550, similar to the earlier case. Toward the end, the shifted data
completely overlapped with the other arm of the spiral, known
to be normal.

Figures 4b through 4d illustrate the performance of
MSART-2 relative to that of ART-2 with or without MA
filtering. The individual outcomes of the scale selection layer
networks were similar to Case One. Toward the end of faulty
operation (time-steps 545 through 550), due to complete over-
lap of shifted data, and another arm of the normal spiral, none
of the scale selection layer networks detected the fault. The
sudden shift back to normal, however, was detected clearly
(time-steps 551 and 552).

Figure 4c shows the similarity measures for abnormal oper-
ation for ART-2 and MSART-2. When compared to Case One
(Figure 3c, top graph), ART-2 can be observed to achieve
considerably less separation between the normal, and the ab-

Figure 4. Comparative performance for test case two.
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normal operations in terms of the similarity measure (Figure
4c, top graph). Similar reduction in the extent of separation is
seen with MSART-2 as well (Figures 3c and 4c, bottom
graphs), although MSART-2 continued to outperform ART-2.
The similarity measure for MSART-2 remained well below the
vigilance for most parts. Toward the end of the abnormal
operation, close match of the test and normal data affected the
similarity measure.

As can be seen from the diagnoses reported in Figure 4d,
ART-2 did not detect the fault consistently because of the
smaller distinction between normal and abnormal data with
respect to the extent of normal noise. Use of the MA filter
alleviated the chattering and also reduced the number of false
alarms during sustained normal behavior. This added advan-
tage, however, came at the cost of delay in detecting the
resumption of normal operation at time-step 551. The
MSART-2 approach, similar to Case One, successfully man-
aged to reduce the chattering as well as the inaccurate classi-
fication at the transitional regions. For Case Two, MSART-2
can thus be seen to provide quicker and more consistent de-
tection than both ART-2 and ART-2�MA in spite of the
narrow separation between abnormal and normal process op-
eration.

Case Three: A high-noise process

In this section, we analyze the effect of multiscale architec-
ture on anomaly detection in the presence of large extent of
noise. The training and testing data used for this case are
provided in Figures 5 and 6a. Similar to Case One, a shift was
simulated from time-step 501 through 550, although it is dif-
ficult to visually detect the shift because of the presence of
more noise.

In contrast with the earlier cases, the high-noise in this case
hampered the detection of the transient phases in finer scales.
Analysis of the decomposed scales (Figure 6b) shows that the
two finest ART-2 detectors (d1 and d2) did not detect the shift
at all, unlike the earlier cases. The overall diagnosis was based
on only the coarsest scaled signal a4, for most parts. Scales d3

and d4 detected the transition back to normal with the expected
delay. This selection of multiple scales for reconstruction re-
duced, to a small extent, the lagged alarm at the resumption of
normal operation. Figures 6c and 6d compare ART-2 and
MSART-2 detectors for this test case. The similarity measure

plot (Figure 6c, top graph) shows that ART-2 was unable to
separate the normal and abnormal process operation. Thus, the
ART-2 detector led to many missed and false alarms (Figure
6d, top graph). The detection flag for MSART-2 closely re-
sembled that for ART-2�MA. Both detectors detected the
transition away from normal, and resumption of normal oper-
ation at a lag approximately equal to the width of the filter used
(16 in this case).

Because of the presence of high-noise for Case Three, it is
not surprising that the ART-2�MA approach worked better
than ART-2. The close resemblance of MSART-2 and ART-
2�MA for this test case attests to our claim that the multiscale
detection approach conforms to the best scale for the fault at
hand.

These three representative cases illustrate that the multiscale
approach is a generic approach that works well on various
different changes. On the other hand, single-scale methods,
such as ART-2 with and without moving average filter work,
best only for specific situations. For example, the unfiltered
ART-2-based approach works best only for low-noise map-
pings (or large shifts), with clearly separated normal and ab-
normal modes of operation. Similarly, the moving average
based approach works better for very noisy mappings (or small
shifts).

Average Run-Length Performance Analysis

Having presented illustrations that bring out the strengths of
the proposed MSART-2 architecture, we now provide a statis-
tically sound comparative performance analysis via Monte
Carlo simulations on three types of processes. For each of the
problems discussed later, mean shifts of varying magnitudes
were superimposed on the normal data. The fault detection
technique under investigation was then applied. The number of
time-steps taken before the fault was detected for the first time,
referred to as run-length, is noted for each algorithm. Run-
lengths may vary in different instances of the random process
for the same shift size, and the same detection mechanism. The
average run-length (ARL), computed across multiple instances
of the random process, was tabulated against each magnitude
of mean shift for each detection algorithm. When the magni-
tude of shift is zero, the corresponding ARL value is indicative
of the false alarm rate of the detection technique, and is
referred to as the in-control run-length. For the same in-control
run-length, it is desirable to have the lowest possible ARL
values for nonzero mean shifts. This mechanism provides a
standard way of comparing the relative performance of differ-
ent monitoring techniques (Montgomery, 1996). When plotted
against the magnitude of the shift, the ARL curve is expected
to be nonincreasing, and typically converges to 1 as the mag-
nitude of shift tends to infinity.

In the experiments presented in the following sections, the
vigilance for ART-2 was varied for a fixed vigilance parameter
of MSART-2, until the in-control run-lengths matched. We can
then compare the MSART-2 and ART-2 detection perfor-
mance, while keeping the average false alarm rate equal for
both detectors, in a Monte Carlo fashion. Since repeated ex-
perimentation is required to calculate ARLs, the MSART-2
detector was limited to the minimum level of wavelet decom-
position (that is, L � 1) to reduce computational time. For
higher levels of wavelet decomposition, the difference between

Figure 5. Variable correlations under normal conditions
for case three.
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ART-2 and MSART-2 performances will be even more signif-
icant.

A univariate process

In this section, we consider the following simple univariate
process model

x�t� � N�0, 1� (1)

where N(0, 1) is the output of an IID Gaussian random number
generator with zero mean and unit variance, and x(t) is the
process under measurement. Process data were normalized so
as to lie between the range 0 to 1 as required by ART-2. A data
set of 1,000 samples was generated for this process, and used
for training the ART-2 and MSART-2 detectors.

To generate the ARL curves, shifts of varying magnitudes
were introduced at t � 0. For subsequent time-steps, simulated
abnormal data were subjected to diagnosis by the algorithm
under investigation (ART-2 or MSART-2), and time-step at
which the shift was first detected (run-length) was recorded for
each magnitude of shift for both detection algorithms. This

process was repeated for 1,000 instances of the random pro-
cess, and the run-lengths were averaged for each shift across
these 1,000 simulations.

The ARL curves for ART-2 and MSART2 are provided as
Figure 7. We can see that for a wide range of shift magnitudes,
MSART-2 detects the shift with smaller average run-lengths.
For small shifts, the process noise hampers the ability of
ART-2 to consistently detect the shift. Thus, the multiscale
architecture successfully improves on detection abilities of
ART-2 without introducing significant delay. For large shifts,
however, ART-2 is seen to perform slightly better as the shift
is easily separable from the inherent noise in the mapping.

A multivariate, linearly correlated process

Consider the following linear multivariate process

x1�t� � N�0, 1� (2)

x2�t� � N�0, 1� (3)

Figure 6. Comparative performance for case three.
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x3�t� �
x1�t� � x2�t�

�2
(4)

x4�t� �
x1�t� � x2�t�

�2
(5)

yi�t� � xi�t� � �i�t� (6)

where xi(t), i � 1, . . . , 4 are linearly correlated process
variables under measurement. Simulated IID Gaussian noise
�i(t), of mean zero and standard deviation of 0.2, was super-
imposed on each variable to generate the measurements yi(t).
Process data were normalized so as to lie between the range 0
to 1. Similar to the univariate process, a data-set of 1,000
measurement vectors was generated, and used for training the
ART-2 and MSART-2 detectors.

Shifts were introduced to yi(t) at t � 0, with the magnitudes
varying as multiples of the standard deviation of �i(t). The
linear correlation across the process variables is, thus, violated.
In a manner similar to the univariate process above, ARL
curves were generated, and are presented in Figure 8. Again,
we observe that MSART-2 outperformed ART-2 for a wide
range of shifts. Shifts of a given magnitude are applied across
all process variables, and, hence, shifts are detected earlier
(lower run-lengths) when compared to the univariate process
(Figure 7). We observe that MSART-2 performs better than
ART-2, except for large shifts when abnormal operation is
well-separated from normal operation.

A multivariate, nonlinearly correlated process

We now present the ARL results for a nonlinear spiral
process similar to the one used for section titled Illustration of
the MSART-2 Algorithm

r�t� � r�t � 1� � 0.001 (7)

� �t� � � �t � 1� � 2 � � � 0.006 (8)

x1�t� � r�t� � cos�� �t�� (9)

x2�t� � r�t� � sin�� �t�� (10)

yi�t� � xi�t� � �i�t� (11)

The ARL results presented in Figure 9 show that, similar to
the earlier results, the multiscale architecture is observed to
improve the detection performance of ART-2 in noisy map-
pings (small shifts). Since the ARL curves are generated by
averaging the run-lengths over a 1000 simulations, these results
validate the illustrations provided in the section titled Average
Run-Length Performance Analysis. When compared to Figure

Figure 7. Comparison of ART-2 and MSART-2 perfor-
mances based on ARL for a univariate pro-
cess.

Figure 8. Comparison of ART-2 and MSART-2 perfor-
mances based on ARL for a linear multivariate
process.

Figure 9. Comparison of ART-2 and MSART-2 perfor-
mances based on ARL for a nonlinear multi-
variate process.
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8, the reduced difference between the ARL curves can be
attributed to the lower number of variables as well as the
nonlinear nature of the process.

The ARL curves presented in this section confirm the utility
of MSART-2 over ART-2 as established in the section titled
Average Run-Length Performance Analysis. By exploiting
wavelet-domain clusters, we see that MSART-2 can detect
small shifts with smaller detection delays when compared with
ART-2.

Industrial Case Studies

In this section, we present two univariate examples taken
from sensor readings of a real large-scale petrochemical pro-
cess. As claimed earlier, deviations from normality in real
processes can be slow or fast. In addition, they may differ in the
extent of noise, and random and/or deterministic nature of the
change. We have chosen two representative process changes
that exhibit these different characteristics. For each example
case, ART-2, MSART-2, and ART-2�MA were trained with
the same training data and same training parameters. Simulated
to the illustration from the section titled Illustration of the
MSART-2 Algorithm, the objective is to detect the deviations
away from normality as soon as possible with the minimum
number of both missed and false alarms. The results presented
later support our claim that MSART-2 automatically conforms
to the nature of the event at hand, and, hence, performs well as
a general detection mechanism. A few more industrial case
studies, including examples of multivariate systems, that in-
vestigate the utility of our framework can be found in (Aradhye
et al., 2002).

Example 1: Drier cooling

Drier cooling is a typical “unusual” pattern in petrochemical
processes where the coolant flow rate increases beyond the
range of normal operation in response to the overheated unit.
Figures 10a and 10b show the process data under normal and
drier cooling conditions. With respect to the magnitude of the
event, normal data are seen to be nearly of a constant mean.

Since the overall magnitude of the change is large compared
to the extent of noise in the process, all three methods under
investigation were expected to perform identically except for
the transition phases. The onset of the deviation, as well as the
return to normality, can be seen to be slow developing (relative
to the window of 16 time-steps used in the MA and wavelet
filters) and deterministic trends. Hence, the delay introduced by
the MA filter was not significant with respect to the pace of
change in the process signal. ART-2�MA was expected to
have better detection accuracy, in the transient regions, than
ART-2 because noise reduction capabilities of the MA filter
outweighed the delay it introduced. This observation is re-
flected in the results presented in Figure 11.

The test data from Figure 10b were subjected to ART-2,
MSART-2, and ART-2�MA detectors trained on the normal
data from Figure 10a. After the onset of the event at time-step
100, all three methods detected the event at approximately

Figure 10. Training and test data for the drier cooling event.

Figure 11. Comparative detection performance for the
drier cooling event
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equal times (Table 1, row 1), and continued to detect it con-
sistently. Toward the end of the event, however, the ART-2
detector missed about 18 genuine alarms more than the ART-
2�MA and MSART-2 detectors (Table 1, row 3). The MA
filter reduced the noise in the data. On the other hand, due to
the slow pace of the onset and end, the filter did not cause a
significant lag. These factors contributed to the better perfor-
mance of ART-2�MA over ART-2. It can be seen that
MSART-2 performance was equivalent to that of ART-2�MA,
because it automatically selected the low-resolution scales for
this slow-paced deterministic event. MSART-2, thus, success-
fully adapted to the slow, deterministic nature of the change.

Example 2: Sensor malfunction due to oil accumulation

Redundant sensors are often used for critical measurements
for the detection of faulty sensor operation. Failure of any one
of the redundant sensors is typically diagnosed by increased
magnitude of the difference between the sensor readings. In
this example, we present an occurrence of sensor failure due to
oil accumulation. The difference between a faulty sensor and
its coupled redundant sensor is shown in Figure 12a. Under
normal conditions, the difference was seen to be random and
nearly zero mean (top graph). In the neighborhood of time-step
720 in the test data (bottom graph), oil began to accumulate in
the actuator of one of the sensors, causing it to report erroneous
readings. This error can be seen to have a nearly zero-mean,
stochastic component in the beginning, and a strong determin-
istic component after time-step 805. The event ended with a

sudden return to normality when the cause of the sensor failure
was eliminated by a human operator (time-step 826).

Since the MA filter was set to calculate the average over a
window of 16 consecutive time-steps, we expected the ART-
2�MA to be ineffective in detecting the initial zero-mean
stochastic part of the failure pattern (Table 1, row 2). Also, in
this case, the return to normality was a sudden, sharp change of
large magnitude. Due to the change in question taking place
over a time-span much smaller than the averaging window, we
expected the ART-2�MA to result in a large number of false
alarms immediately after the end of the sensor failure (Table 1,
row 4). Indeed, we find that ART-2 detector resulted in a
smaller number of false flags and a smaller number of missed
flags for this event, when compared to the ART-2�MA detec-
tor (Figure 12b, Table 1). Similar to Figure 11, we observe that
MSART-2 conforms to the scale of the change under consid-
eration and mimics the best performance for the event at hand.

Conclusion

Previous work by the authors established ART-2 as a mech-
anism for efficiently and adaptively capturing linear and non-
linear mappings between process variables for the purpose of
fault diagnosis and sensor trend analysis. The multiscale archi-
tecture proposed in this work was shown to significantly en-
hance the range of applicability of the ART-2-based diagnosis
algorithm. Process malfunctions naturally occur across multi-
ple scales. Single scale approaches, which can be shown to be
special cases of the proposed scheme, are often limited to

Table 1. Industrial Case Studies: Summary

Event Onset Type True Time ART2 MSART2 ART2�MA

Drier Cooling slow, deterministic 100 120 119 119
Oil Accumulation slow, stochastic 720 730 730 768

Event End Type True Time ART2 MSART2 ART2�MA

Drier Cooling slow, deterministic 666 630 648 648
Oil Accumulation fast, deterministic 826 825 825 840

Figure 12. Detection of oil accumulation (sensor failure).
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specific types of faulty operation depending on their scales. For
example, ART-2 without any filtering, a finest scale detector, is
best for detection only in cases where the shifts are large, the
changes are sudden, or the event is stochastic. Similarly,
ART-2 with moving average filtering, a coarsest scale detector,
is best for small shifts, gradual changes, and deterministic
events. Our approach integrates scale selection and clustering-
based diagnosis. The results presented in this paper show that
MSART-2 is a general detection algorithm that chooses the
scale most appropriate for the malfunction at hand, and, hence,
it delivers a good performance for noisy events with a wide
range of shift magnitudes and paces.
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